On application of deep learning to simplified quantum-classical dynamics in electronically excited states

نویسندگان

چکیده

Abstract Deep learning (DL) is applied to simulate non-adiabatic molecular dynamics of phenanthrene, using the time-dependent density functional based tight binding (TD-DFTB) approach for excited states combined with mixed quantum–classical propagation. Reference calculations rely on Tully’s fewest-switches surface hopping (FSSH) algorithm coupled TD-DFTB, which provides electronic relaxation in fair agreement various available experimental results. Aiming at describing electron-nuclei large systems, we then examine combination DL excited-state potential energy surfaces (PESs) a simplified trajectory propagation Belyaev–Lebedev (BL) scheme. We start assess accuracy TD-DFTB upon comparison optical spectrum and higher-level theoretical Using recently developed SchNetPack (Schütt et al 2019 J. Chem. Theory Comput. 15 448–55) applications, train several models evaluate their performance predicting energies forces. Then, main focus given analysis population low-lying computed aforementioned methods. determine timescales compare them data. Our results show that demonstrates its ability describe PESs. When BL scheme considered this study, it reliable description phenanthrene as compared either data or FSSH/TD-DFTB Furthermore, allows high-throughput negligible cost.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the electronically excited states of uracil.

Vertical excitation energies in uracil in the gas phase and in water solution are investigated by the equation-of-motion coupled-cluster and multireference configuration interaction methods. Basis set effects are found to be important for converged results. The analysis of electronic wave functions reveals that the lowest singlet states are predominantly of a singly excited character and are th...

متن کامل

Electronically Excited States of Interstellar Anions

In the search for carriers of the diffuse interstellar bands (DIBs), a nearly ubiquitous, as-of-yet unattributed interstellar absorption spectrum, new theories are being proffered to explain this astronomical phenomenon. One of these is that rarely occurring excited states of anions may be responsible for some of these features. Using state-of-the-art quantum chemical techniques we examine near...

متن کامل

Theoretical studies on the electronically excited states of helium clusters

The vertical excited states of small helium clusters were calculated using configuration interaction singles (CIS) and the character of the states was determined from studying the attachment and detachment densities [2]. It was found that in the n=2 manifold of excited states the cluster excitations could be interpreted in terms of superpositions of atomic like states and good agreement with ex...

متن کامل

on the relationship between self- regulated learning strategies use and willingness to communicate in the context of writing

این تحقیق به منظور بررسی رابطه بین میزان استراتژیهای خود-تنظیم شده یادگیری و تمایل به ایجاد ارتباط دانشجویان زبان انگلیسی انجام شده است.علاوه بر این،روابط و کنش های موجود بین ریزسنجه های استراتژیهای خود-تنظیم شده یادگُیری ، مهارت نگارش و تمایل به برقراری ارتباط و همچنین تاٍثیرجنسیت دانشجویان زبان انگلیسی در استراتژیهای خود-تنظیم شده یادگیری و تمایل به برقراری ارتباط آنها مورد بررسی قرار گرفته شد.

15 صفحه اول

Semiempirical Quantum-Chemical Orthogonalization-Corrected Methods: Benchmarks of Electronically Excited States.

The semiempirical orthogonalization-corrected OMx methods have recently been shown to perform well in extensive ground-state benchmarks. They can also be applied to the computation of electronically excited states when combined with a suitable multireference configuration interaction (MRCI) treatment. We report on a comprehensive evaluation of the performance of the OMx/MRCI methods for electro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Machine learning: science and technology

سال: 2021

ISSN: ['2632-2153']

DOI: https://doi.org/10.1088/2632-2153/abfe3f